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Abstract We demonstrate the use of advanced linear stability tools developed for
the spectral-element codeNek5000 to investigate the dynamics of nonlinear flows
in moderately complex geometries. The aim of stability calculations is to identify
the driving mechanism as well as the region most sensitive tothe instability: the
wavemaker. We concentrate on global linear stability analysis, whichconsiders the
linearised Navier–Stokes equations and searches for growing small disturbances,
i.e. so-called linear global modes. In the structural sensitivity analysis these modes
are associated to the eigenmodes of the direct and adjoint linearised Navier–Stokes
operators, and the wavemaker is defined as the overlap of the strongest direct and
adjoint eigenmodes. The large eigenvalue problems are solved using matrix–free
methods adopting the time–stepping Arnoldi approach. We present here our imple-
mentation inNek5000 with theARPACK library on a number of test cases.

1 Introduction

The flow of fluids can be either laminar, characterised by smooth patterns, or tur-
bulent, appearing chaotic and unpredictable. Understanding the physics of laminar-
turbulent flow transition has been originally motivated by aerodynamic applications,
but has become more widespread since. Initially, hydrodynamic stability was stud-
ied by means of the classical linear stability theory investigating the behaviour of
small disturbances in space and time around some basic flow state. The exponen-
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tial growth of linear perturbations is studied at each streamwise position and the
distinction between local convective and absolute stability is made [12]. This local
treatment is legitimate for parallel and weakly non-parallel flows, but many of the
flow configurations developing strong instabilities and eventually exhibiting transi-
tion to turbulence are strongly non-parallel and may belongto the open flow cat-
egory, where fluid particles continuously enter and leave the considered domain.
Such unstable open flows require global analysis where the evolution of perturba-
tions is considered in the whole physical domain [6]. The global behaviour of the
flow depends on the competition between local instability and basic advection. The
extensive work on global stability in the past years has beenreviewede.g.in [17].

However, such linear modal analysis often fails in predicting the transitional
Reynolds number determined experimentally, and the more accurate transition sce-
nario based on receptivity has to be considered. In this casethe non-normality of
the linearised Navier-Stokes (LNS) operator has to be takeninto account [6, 18] and
the global modes of the adjoint operator have to be calculated. This kind of analysis
has been performed for the 2D casese.g.the flow past a circular cylinder [9]. The
limitations of structural sensitivity analysis are discussed by Chomaz [6], where it
was pointed out that this method is better suited for strongly non–parallel flows than
for almost parallel flows, as the very high degree of the operator non–normality can
lead to wrong predictions of the dynamics.

Although global analysis allows to avoid the limitation of local theory, it is com-
putationally much more expensive, as linear global modes have been associated to
the eigenmodes of the LNS operator [10] involving large eigenvalue problems. For
sizes of order dim(A)∼ 107 special matrix-free methods using time-steppers are re-
quired [2, 3]. Recent advances in numerical methods, in particular tools for solving
very large eigenvalue problems [15], make it possible to uselinear stability theory
for global analysis of 2D and 3D flows with nearly arbitrary complexity, based on
only minimal modifications of existing numerical simulation codes [4]. A number
of authors have determined the spectrum of the LNS operator for different 2D flows,
however, the first calculations for the fully 3D base flow weredone by Bagheriet
al. [3, 16] for a jet in crossflow (JCF). This work has been later extended in [13] by
calculating 3D adjoint global eigenmodes.

The objective of the present paper is to demonstrate the use of global linear sta-
bility tools developed for the spectral-element codeNek5000 [8, 7] to investigate
the dynamics of flows in moderately complex geometry. As the final case we con-
sider the so-called jet in crossflow which refers to a jet of fluid exiting through a
nozzle and interacts with the surrounding cross-flow fluid. It is a canonical flow
with complex, fully 3D dynamics which allows for a test of thesimulation capabil-
ities and the methods for studying the flow stability. The previous results for this
flow [3, 13, 16] were obtained for simplified setups, in which the inflow jet was
represented by a Dirichlet boundary condition due to the limitations of the applied
pseudo-spectral simulation method. We avoid this limitation using the more flexible
spectral-element method (SEM), which provides spectral accuracy while allowing
for complex geometries.
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2 Direct and adjoint global modes

Structural sensitivity analysis determines the instability mechanism that initiates the
transition to an unsteady flow. It combines global linear stability with receptivity
looking into the eigenmodes of the LNS (direct) operatorA and its adjointA†,
where the adjoint operator is defined by the property〈u†,Au〉 = 〈A†u†,u〉, with
u†,u and 〈·, ·〉 being vector functions and inner product, respectively. The linear
stability analysis of the direct problem let us determine several characteristics: the
parameters (e.g.Reynolds number) at which the flow first becomes unstable, andthe
frequenciesωr , growth rateωi and spatial structure of the linear perturbations. On
the other hand, the adjoint system provides information on the optimal way to excite
the instability, as the perturbation in receptive region amplify more due to forcing. In
combination the two types of modes can be used to locate the most sensitive region
in the flow known aswavemaker, which is defined as the overlapη of the directû
and adjointû† strongest global modes [6, 9, 11] (see Figs. 2 and 6),

η(x0) =
|û†(x0)| · |û(x0)|

〈û†, û〉
. (1)

The wavemaker is the region in the flow where a variation in theflow structure
provides the largest drift of the eigenvalues and thereforepinpoints the most likely
region in the flow for the inception of the global instability.

We consider the incompressible Navier–Stokes equations linearised about a base
flow Ub in non-dimensional form withu, p and Re being velocity and pressure
perturbation and the Reynolds number, respectively,

∂u
∂ t

+u ·∇Ub+Ub ·∇u−
1
Re

∇2u+∇p = f , (2)

∇ ·u = 0 in Ω , (3)

u = 0 on∂Ωv , (4)

pn−
1

Re
∇u ·n = 0 on∂Ωo . (5)

Two last equations are the boundary conditions (BC) on the surface of the computa-
tional domainΩ . Subscriptsv ando stand for regions where eithervelocity(Dirich-
let) or outflow BC are specified, andn denotes the outward normal. The forcing
f usually vanishes insideΩ , but may be used as sponge layers at inflow/outflow
boundary. The corresponding set of adjoint equations reads

∂u†

∂ t
+(∇Ub)

Tu†−Ub ·∇u†+
1
Re

∇2u†+∇p† = f , (6)

∇ ·u† = 0 in Ω , (7)

u† = 0 on∂Ωv , (8)

p†n+
1

Re
∇u† ·n = (Ub ·n)u

† on ∂Ωo , (9)
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(a) (b)
Fig. 1 (a) Vortical structures (λ2 isolevels) of the base flow for JCF setup including the pipe.
(b) Mesh structure at the connection of the circular pipe with the rectangular box. The element
boundary and the position of the GLL points are shown.

whereu† andp† are adjoint perturbations. Notice the change of sign in the equations
and the fact thatoutflowBC are inhomogeneous.

The solution to the direct and adjoint problem is computed using a Legendre
polynomial based SEM implemented inNek5000 [8]. In this method the gov-
erning equations are cast into weak form and discretised in space by the Galerkin
approximation, following thePN −PN−2 approach. The velocity space is spanned
by Nth-order Lagrange polynomial interpolants, based on tensor-product arrays of
Gauss–Lobatto–Legendre (GLL) quadrature points in a localelement. The individ-
ual elements take the shape of hexahedra which can then be transformed using gen-
eral coordinate mapping as shown in Fig. 1(b).
Nek5000 does not support the general inhomogeneous BC as given above.

Therefore, to keep direct and adjoint problems consistent we set homogeneous
Dirichlet BC on all∂Ω . To avoid reflections we use a sponge forcingf = λ (x)(Ub−
v) at the inflow/outflow boundaries, wherev stands foru or u† andλ (x) is a smooth
step function [5]. The dependency of the operator spectra onthe applied BC for the
flow past circular cylinder case is discussed in Section 4.

To obtain the base flow one has to find the steady state solutionof the non-
linear Navier–Stokes equations, which in many of the considered cases is unstable,
in particular for strongly convectively unstable flows (e.g.JCF). We compute the
base flow using selective frequency damping (SFD) [1], whichdamps the oscilla-
tions of the unsteady part of the solution using a temporal low-pass filter by setting
f =−χ(u−w), whereu is the flow solution andw its temporally low-pass-filtered
counterpart obtained by a differential exponential filterwt = (u−w)/∆ . The am-
plitude of the forcingε = ‖(u−w)‖ in Ω is a good indicator of convergence; 2D
test cases reached levelsε ≈ 10−13, whereas the computationally more expensive
3D runs were stopped at 10−10 or 10−7 depending on the resolution, which is lower
than the tolerance used for eigenvalue calculation (10−6). An example of such a
SFD base flows for JCF and cylinder flow are presented in Figs. 1(a) and 2.
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Fig. 2 Two-dimensional flow past a circular cylinder atRe= 50. The upper part shows the velocity
magnitude of the base flow, and the lower part presents the overlap functionη for the strongest
direct and adjoint modes. This plot can be compared with Figs. 8 and 17 in Ref. [9].

The eigenvalue problem is then constructed rewriting the LNS equations in oper-
ator formut = Au and assumingu(x, t) = û(x)exp(−iωt), whereû(x) is the global
mode andω its complex eigenvalue. For general 3D flows the size of the matrix A
prohibits its explicit construction, so only the action ofA on the vectoru can be
calculated. Solving the eigenvalue problem can then be achieved using the so-called
time-stepper method,i.e.an iterative technique based on orthogonal projection ofA
onto a lower-dimensional subspace, in which the Arnoldi algorithm is applied and
the Krylov subspace is constructed using snapshots taken from the evolution of the
flow field u separated by a constant time interval∆ t. To avoid frequency aliasing
∆ t must be small enough such that at least two sampling points inone period of the
highest frequency mode are included (seee.g.Ref. [2]). In presented studies we do
not consider dependency of calculated spectra on the size ofKrylov space and∆ t.
The other important parameter is the actual time stepδ t of the simulation, which is
related to the CFL condition. In our simulations we have tested Courant numbers in
the range 0.05−0.2 and found significant dependency of the operatorA spectra if
the cases were marginally resolved in space. On the other hand, the fully resolved
2D simulations show little dependence of the spectra on the Courant number.

In our implementation we use the implicitly restarted Arnoldi method (IRAM)
from the ARPACK library [15]. We solve for the generalised eigenvalue problem
Aû =−iωBû, whereB is the mass matrix. It allows us to simplify the treatment of
the duplicated values of the velocity field at the element faces, and to get the exact
value of the inner product applied in the orthogonalisationstep.

3 Poiseuille Flow

To validate our implementation we performed a number of tests corresponding to
different flow configurations. The first one is plane Poiseuille flow, in which a fluid
is moving laterally between two plates whose length and width is much greater
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Fig. 3 Spectra (growth rateωi versus frequencyωr ) for the different simulations of plane Poiseuille
flow at Re= 2000. We utilise the negative and positiveωr parts to compare different cases. Left:
Comparison of the spectra ofNek5000 run with N = 17 (1) with results of the local analysis (2)
and the low resolutionN = 11 (3). Right: Relative error of the growth rateε(ωi) for N = 17 as a
function ofωr with respect to local analysis (1) and the spectra of the adjointoperator (2).

than the distance separating them. This 2D parallel flow can be treated exactly by
local analysis. We performed our calculations forRe= 2000 (based on centreline
velocity and channel half height) on a rectangular grid of streamwise length 2π
with periodic BC, built of 6×6 spectral elements with polynomial orderN ranging
from 11 to 17. We compared our result with local analysis (O. Tammisola, private
communication) and found very good match for the first 100 eigenvalues calculated
for N= 17 (Fig. 3). Although only 3 modes with the highest frequencyωr > ωmax≈
21 are visibly displaced, we can see slow decrease of accuracy with growing ωr .
This becomes more pronounced with decreasingN as the maximum frequency of
the well resolved waves (ωmax≈ 16 for N = 11) is getting lower and thus a small
number of spurious modes appears. Similar conclusions can be drawn comparing
direct and adjoint modes, however the threshold frequency for fast relative error
growth appears to be lower (ωmax≈ 12 forN= 17). There is also a number of modes
clustered aroundωr = 0, with relative error of order 10−6 which all correspond to
highly damped modes.

4 Flow Past Circular Cylinder

The next case is the plane wake behind a circular cylinder, which is a canonical 2D,
non-parallel flow extensively studied in the literature. Its structural sensitivity was
investigated in Ref. [9] and we compare our results against this work adopting the
grid from [14], where the cylinder of unit diameter was placed at (0,0) in the grid
extending from -15 to 35 and from -15 to 15 in streamwise and cross-flow directions,
respectively. We performed a number of runs forRe= 40, 45 and 50 (based on
diameter and incoming velocity) calculating the most unstable global modes and
their overlap functionη . Very good agreement with [9] is obtained. An example of
a base flow and a wavemaker forRe= 50 is presented in Fig. 2 which can readily



Stability Tools for Nek5000 7

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

-3 -2 -1  0  1  2  3

ω
i

ω
r

1
2
3

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

-3 -2 -1  0  1  2  3

ω
i

ω
r

1
2
3
4

Fig. 4 Spectra of the direct operator for the flow past circular cylinder atRe= 50. Left: Case with
outflow BC in the non-symmetric box (1) compared with results of theCPL code (2) and run in the
symmetric box (3). Right: Cases in non-symmetric box with differentBC: (1) outflow (the same as
(1) on left plot), (2) Dirichlet without sponge, (3) Dirichlet with sponge applied to inflow/outflow
regions. (4) symmetric box with Dirichlet BC and sponge.

be compared with Figs. 8 and 17 in Ref. [9]. The left plot in Fig. 4 (negativeωr )
presents the comparison of the calculated spectra of the direct operator forRe= 50
with the results of CPL code, which is a modified version of thecode employed
in [9] (I. Lashgari, private communication). There is good agreement for the least
damped, low frequency modes, but we observe a relative shiftof the modes growths
with increasingωr and decreasingωi . These weaker modes are very sensitive to the
exact simulations details such as grid size and boundary conditions. Furthermore,
we present results of the runs with outflow BC (Eq. 5) for non-symmetric (x ∈
[−15,35]; crosses) and symmetric (x∈ [−35,35]; triangles) mesh; the two meshes
differ in the extent of the upstream (inflow) part which is important for the adjoint
simulations. There is clearly sensitivity of the spectra tothese details as the position
of the branches is moved. The dependency of the spectra on theapplied BC and grid
size is illustrated in Fig. 4. We found the Dirichlet BC combined with the sponge
forcing u andu† at inflow/outflow to be the least sensitive to the grid and we thus
use these settings in the remainder of our study. The relative error of the growth
rate pertaining to the direct and adjoint modes for this setup is lower than 10−6

(not shown). The resolution studies for this case showed strong dependency of the
spectra on the polynomial orderN with the frequency of the poorly resolved modes
shifted towardsωr = 0.

5 Jet in Crossflow

The most complex flow case considered in this study is the jet in crossflow (JCF),
which is a non-parallel and fully 3D flow referring to a jet of fluid exiting a pipe and
interacting with the boundary layer perpendicular to the pipe orifice (see Fig. 1). For
the detailed description of the case we refer to Refs. [3, 13]. We consider two dif-
ferent setups of this flow: one corresponding the simplified setup of Ilaket al. [13],
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Fig. 5 The spectra of the direct and adjoint operator for JCF for velocity ratio R= 1.5. Left plot
corresponds to the simplified setup discarding the pipe and presents the direct operator spectra
for high (1) and low (2) resolution runs together with the adjoint operator spectra of the high
resolution run (3). The right plot shows the spectra of the direct (1) and adjoint (2) operator for the
setup including pipe in the consideration.

in which the inflow jet was represented by a Dirichlet boundary condition, and the
more realistic one with the pipe included in the domain as shown in Fig. 1. For the
simplified setup, we made two major changes compared to Ref. [13]: i) no fringe re-
gion as the SEM code does not require periodic BC in the streamwise direction, and
ii) the length of the box is longer (150 versus 75 units in [13]). We increased the box
length because we found the result to be very sensitive to anykind of disturbances;
especially the proper treatment of outflow BC proved to be crucial, so in an effort
to reduce its influence we increased the downstream part of the grid together with a
sponge region. This extreme sensitivity of the simplified JCF can be related to both
strong non-normality of LNS operator, but also to the ”unphysical” u = 0 Dirichlet
BC at the pipe orifice, which is very close to the dynamically important region. For
the same reason we were not able to reproduce the results of [13]. In our runs we
set the jet to free-stream velocity ratioR to 1.5, and the Reynolds number at the
jet positionRe= 178.2 (based on free-stream velocity and cross-flow displacement
thickness). The jet diameter and pipe length are equal 3 and 20 units, respectively.

Most of our runs we performed studying the simplified setup and we found it
very sensitive to the grid resolution. On the left plot in Fig. 5 the results of the
higher resolution (polynomial orderN = 9, crosses) are compared with the lower
resolution (N = 6, circles) and the spectra of the adjoint operator (N = 9, triangles).
The increased resolution causes the initially unstable flow(positive growth rate of
the strongest mode) to stabilise, as the whole spectra shifts down. Comparison of the
direct and adjoint spectra also shows that the evenN= 9 resolution is only marginal,
as the lowest value of the growth rate errorε(ωi) is on the order of 10−4.

Similar conclusions can be drawn comparing the direct (crosses) and adjoint
(circles) spectra of the high resolution (N = 9) run including the pipe (right plot
in Fig. 5). One can see a clustering of the poorly resolved adjoint modes around
ωr = 0, which is similar to what we already observed in the cylinder case (Section
4). However, the least stable modes agree well between direct and adjoint simulation
indicating that the main dynamics is captured well. Fig. 6 presents a 2D cut through
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Fig. 6 Two-dimensional cut through the symmetry plane of the grid for theJCF setup including
the pipe forR= 1. The colours shows the value of the strongest overlapη . Isolevels of the direct
(dashed line) and adjoint (continuous line) strongest modes at 1%, 10% and 30% are also shown.

the symmetry plane of the grid showing isosurfaces of the direct (dashed) and ad-
joint (continuous line) strongest modes as well as their overlap η (colour). The
isocontours are placed at 1%, 10% and 30% of the maximum valueof the modes
showing their spatial extent and illustrating considerable separation of their max-
ima, which is related to the strong non-normality of the operator. As the plot covers
the region close to the pipe orifice, only the adjoint mode maximum is visible. The
overlap functionη features a total of three maxima of which one is clearly related
to the adjoint mode, located close to the steady horseshoe vortex upstream the jet.
The other two maxima appear in the shear layer downstream of the jet forming the
wavemaker.

The analysis of 3D flows is computationally very expensive, and the computation
of the single JCF spectrum withN = 9 takes about 2–3 weeks on 1024 cores.

6 Conclusions

In this work we investigated the use of linear stability tools implemented in the
SEM codeNek5000 for studying the stability and sensitivity of 3D flows with
moderately complex geometry. We validated our implementation on a number of
2D parallel and non-parallel flow cases against the local stability analysis as well as
literature data. Resolution studies show that the calculated spectra are very sensitive
to the grid resolution and proper treatment of boundary conditions. In our simula-
tions we adopted Dirichlet boundary conditions together with sponge layers to keep
direct and adjoint problems consistent, however another possible solution would be
to adopt correct direct and adjoint outflow boundary according to Eqs 5 and 9. The
grid spacing defines the shortest wave length that can be properly resolved, which
corresponds to setting the maximum possible frequency of the calculated modes.
Higher modes then appear as spurious modes in the spectrum. In the case of the
flow past cylinder and a jet in crossflow (including the inflow pipe) the frequency
of the spurious modes was shifted towards zero giving clusters of spurious low fre-
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quency modes with low growth rates. Comparing direct and adjoint spectra is shown
to help in identifying spurious modes, but even then carefulresolution studies are
necessary. The dependency of the spectra on the grid resolution usually does not
play a crucial role for 2D simulations, but it becomes an important issue when mov-
ing to 3D, in particular in regions of active dynamics and complex geometry. In this
case adaptive mesh refinement algorithms might be instrumental for future studies.
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